3,467 research outputs found

    A multiplicity result for double singularly perturbed elliptic systems

    Get PDF
    We show that the number of low energy solutions of a double singularly perturbed Schroedinger Maxwell system type on a smooth 3 dimensional manifold (M,g) depends on the topological properties of the manifold. The result is obtained via Lusternik Schnirelmann category theory

    The Role of Spin Anisotropy in the Unbinding of Interfaces

    Full text link
    We study the ground state of a classical X-Y model with p≥3p \ge 3-fold spin anisotropy DD in a uniform external field, HH. An interface is introduced into the system by a suitable choice of boundary conditions. For large DD, as H→0H \to 0, we prove using an expansion in D−1D^{-1} that the interface unbinds from the surface through an infinite series of layering transitions. Numerical work shows that the transitions end in a sequence of critical end points.Comment: 7 pages RevTeX, plus 1 postscript figure available from the authors OUTP-94-41

    Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore

    Full text link
    The advent of solid state nanodevices allows for interrogating the physico-chemical properties of a polyelectrolyte chain by electrophoretically driving it through a nanopore. Salient dynamical aspects of the translocation process have been recently characterized by theoretical and computational studies of model polymer chains free from self-entanglement. However, sufficiently long equilibrated chains are necessarily knotted. The impact of such topological "defects" on the translocation process is largely unexplored, and is addressed in this study. By using Brownian dynamics simulations on a coarse-grained polyelectrolyte model we show that knots, despite being trapped at the pore entrance, do not "per se" cause the translocation process to jam. Rather, knots introduce an effective friction that increases with the applied force, and practically halts the translocation above a threshold force. The predicted dynamical crossover, which is experimentally verifiable, is of relevance in applicative contexts, such as DNA nanopore sequencing.Comment: 6 pages; 7 figure

    Holographic field theory models of dark energy in interaction with dark matter

    Get PDF
    We discuss two lagrangian interacting dark energy models in the context of the holographic principle. The potentials of the interacting fields are constructed. The models are compared with CMB distance information, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. For both models the results are consistent with a non vanishing interaction between dark sectors - with more than three standard deviations of confidence for one of them. Moreover, in both cases, the sign of coupling is consistent with dark energy decaying into dark matter, alleviating the coincidence problem.Comment: arXiv admin note: substantial text overlap with arXiv:0912.399
    • …
    corecore